

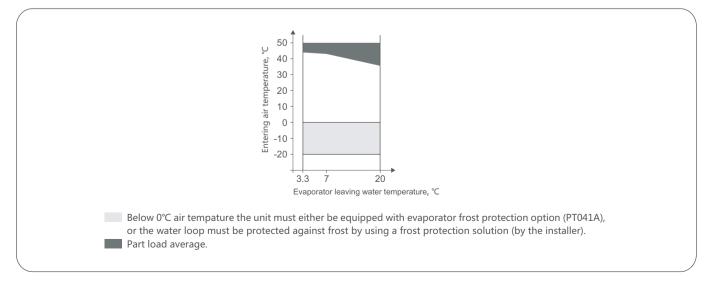
30KAV Variable Speed Air-cooled Screw Chiller

Nominal capacity: 346.2~1472kW

.

In 1998, Time magazine named Dr. Carrier one of its 20 most influential builders and titans of the 20thcentury.

Carrier is a leading global provider of innovative HVAC, refrigeration, fire, security and building automation technologies. Supported by the iconic Carrier name, the company's portfolio includes industryleading brands such as Carrier, Kidde, Edwards, LenelS2 and Automated Logic. Carrier's businesses enable modern life, delivering efficiency, safety, security, comfort, productivity and sustainability across a wide range of residential, commercial and industrial applications.

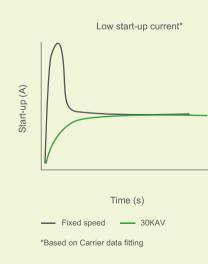

Nomenclature

30KAV1100	A	PT002B			
			0	Unit option PT001 PT002B PT003A PT005 PT303 PT010F PT012 PT015 PT015S PT015S PT015S PT020A PT041A PT050 PT060 PT061 PT071 PT093A PT104 PT107 PT148B PT148C PT148D PT156 PT158A PT156 PT158A PT275 PT281 PT282 PT299 PT301 PT305A PT305A PT305A PT305A PT305A PT305A PT305A PT305A PT305A PT305A PT305A PT305A PT305A PT305A PT312A	Cu/Cu coil Blygold PoluAL Pretreated Coating (Gold Fin) Brine option (part models*) Pretreated Coating (Blue Fin) Fixed speed fan High Static Fan Hard sound insulation cover (part models) Low noise level (Compressor sound jacket) Ultra-low noise option (part models) IP54 Control Box Evaporator Anti-Freeze Protection Total heat recovery option (part models**) 460V-3Ph-60Hz 380V-3Ph-60Hz High efficiency Compressor discharge valves 1.6Mpa evporatior Reversed Evaporator Connection J-Bus Gateway Bacnet Gateway Energy Management Module 7" Touch Screen Remote controller Evaporator with aluminum jacket EMC Classification C2 38mm Evaporator Insulation Lead/lag control Spring damping Isolate valve for saftey valve(dual safety valve) Australian PV code

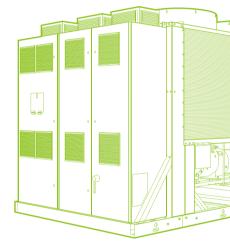
*single circuit: 30KAV0351-0901 dual circuit:30KAV0550-1100 **30KAV0351 30KAV0551 30KAV0751 30KAV1000

Operating Range

Evaporator	Min. temperature	Max. temperature			
Entering water temperature (at start) °C	-	45			
Entering water temperature (operating) °C	6.8	26			
Leaving water temperature (operating) °C	3.3	20			
Condenser	Min. temperature	Max. temperature			
Outdoor air temperature °C	-20	50			



Introduction


- ✓ The Aquaforce chillers that apply zero ozone depletion potential HFC-134a refrigerant with Greenspeed[™] Intelligence are the premium solution for commercial and industrial applications where installers, consultants and building owners require superior reliability and optimal performances, especially at part load.
- 30KAV are designed to meet current and future requirements in terms of energy efficiency, versatility and operating sound levels. Through the optimised combination of proven best-in-class technologies that include:
 - Exclusive new screw compressors with Greenspeed[™] Intelligence.
 - Carrier[®] Smartvu[™].
 - Condenser fans with Greenspeed[™] Intelligence.

Low Energy Consumption

- The air conditioning system could use 30%~40% of anual building engery consumption, 30KAV helps customer involved in green building certification with Greenspeed[®] inveter - driven technology.
- With advanced unit mounted inverter-driven technolgy, the 30KAV is designed for high performance both at full load and at part load. Exceptional efficiency performance at part load which is up to 5.8, customer even can select PT071 (high efficiency) to achieve high performance and energy saving.
- Cooperating with primary viarable flow system, the system efficiency would be further enhanced by synchronized control of chillers and pumps.
- The high energy efficiency is reached thanks to:
 - Inverter driven twin-rotor screw compressors allowing precise capacity matching of building load and reducing unit power input, especially at part-load.
 - Inverter driven fan motors minimizing power consumption while granting optimum air flow.
 - Electronic expansion device permitting operation at a lower condensing pressure and improved utilization of the evaporator heat exchange surface.
 - Economizer system with electronic expansion device increases cooling capacity by 10% and efficiency by 4%.

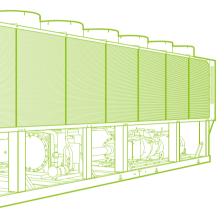
-0

- Ø Screw compressors with Greenspeed[™] Intelligence:
 - Industrial-type screw compressors with oversized bearings and motor cooled by suction gas.
 - Specifically sized inverter for each compressor motor ensures reliable operation and easy maintenance.
 - All compressor components assembly are easily accessible on site minimising down-time.
- - Fans equipped with inverter-driven asynchronous motors.
 - Specifically sized inverter optimize air flow management reducing cost.
 - Easily accessible inverter of fan speed control for easy service.
- Ø Brine option design:
 - Apply certain concentration of ethylene glycol or propylene glycol and evaporator leaving water temperature can reach -6 $\rm C$
 - Reducing tubes in evaporator increase flow rate to ensure chiller stable operation even when the evaporator leaving water temperature is less than 0 % .

Exceptional endurance tests.

- Partnerships with specialised laboratories and use of limit simulation tools (finite element calculation) for the design of critical components.
 - Transport simulation test equivalent to 2000 km by truck under harsh conditions.
 - Salt mist corrosion resistance test in the laboratory for increased corrosion resistance.

Total Heat Recovery Application


- Carrier total heat recovery chillers can provide both cooling and hot water which can be widely used by customers like hotel, factory and etc.
- Both the evaporator and condenser of total heat recovery chiller which are designed in series and the multi-function valve ensures chiller stably producing hot water even under low ambient temperature.
- Fan stops running to reduce noise and improve chiller efficiency under total heat recovery module.
- Ø Cost saving during lifetime with high integrated efficiency.
 - Saving investment of boiler and auxiliary equipment .
 - Free hot water and the fan stops to reduce consumption.
- One chiller can meet cooling and sanitary water demand simultaneously to save more useful space for user.

Minimised Operating Sound Levels

The inverter technology used for the compressor and fan motors minimises noise levels at part load operation. When the unit is delivering 25% for example, compressors and fans are running at minimum speed which implies lower noise.

Standard unit features include:

- Discharge dampers integrated in the oil separator (Carrier patent).
- Condenser coils in W-shape with an open angle, allowing quieter air flow across the coil.
 Low-noise fans made of a composite material (Carrier patent) do not generate intrusive low frequency noise.

and 551/591

General Features

- New innovative smart control features:
 - An intuitive and user-friendly, 4.3" colored interface (7" as option).
 - Screen-shots with concise and clear information in local languages.
 - Complete menu, customized for different users (end user, service personnel and Carrier-factory technicians).
 - Easy access to the controller box with touch screen mounting to ensure legibility under any lighting conditions.
 - Safe operation and unit setting: password protection ensures that unauthorized people cannot modify any advanced parameters.
 - Simple and "smart" intelligence uses data collection from the constant monitoring of all machine parameters to optimise unit operation.
 - Night-mode: Cooling capacity management for reduced noise level.
 - Multiple protocols: BACnet IP & MSTP, Modbus IP & RTU, LON Talk, J-Bus are supported (BAcnet IP/Modbus IP as standard).

Economical operation

Energy management:

- Internal time schedule clock controls chiller on/off times and opera tion at a second set-point.
- The DCT (Data Collection Tool) records the alarms history to simplify and facilitate service operations.

Remote Management (Standard)

- Units with Carrier[®] SmartVu[™] control can be easily accessed from the internet, using a PC with an Ethernet connection. This makes remote control quick and easy and offers significant advantages for service operations.
- Equipped with an RS485 serial port that offers multiple remote control, monitoring and diagnostic possibilities. When networked with other Carrier equipment through the CCN (Carrier Comfort Network - proprietary protocol), all components form a HVAC system fully-integrated and balanced through one of the Carrier's network system products, like the Chiller System Manager or the Plant System Manager (optional). also communicates with other building management systems viaoptional communication gateways.

- The following commands/visualizations are possible from remote
 - Start/Stop of the machine.
 - Dual set-point management: Through a dedicated contact is possible to activate a second set-point (example: unoccupied mode).
 - Demand limit setting: To limit the maximum chiller capacity to a predefined value.
 - Water pump control: These outputs control the contactors of one/two evaporator water pumps.
 - Operation visualization: Indication if the unit is operating or if it's in stand-by (no cooling load).
 - Alarm visualization.

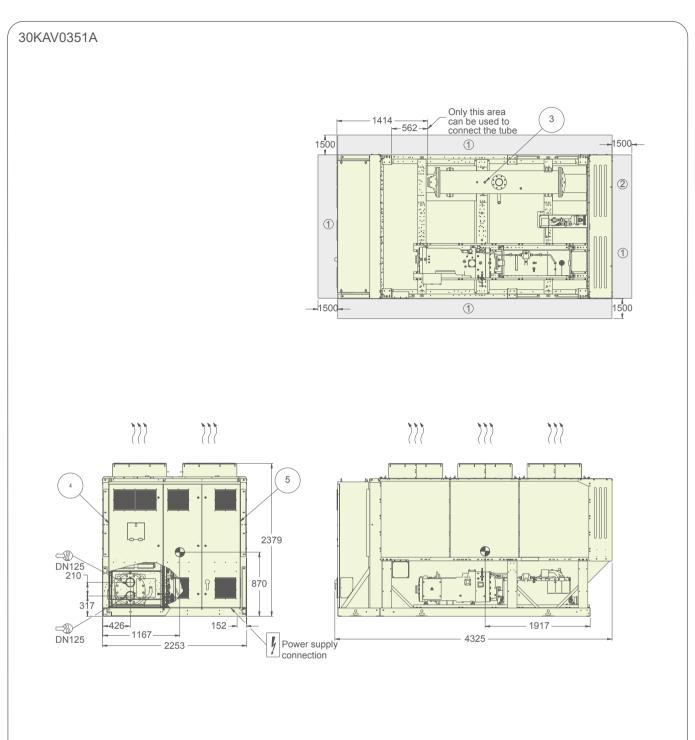
Absolute reliability

- The Energy Management Module (EMM) offers extended remote control possibilities:
 - Room temperature: Permits set-point reset based on the building indoor air temperature (if Carrier thermostat are installed).
 - Set-point reset: Ensures reset of the cooling set-point based on a 4-20 mA or 0-10 V signal.
 - Demand limit: Permits limitation of the maximum chiller power or current based on 0-10 V signal.
 - Demand limit 1 and 2: Closing of these contacts limits the maximum chiller power or current to two predefined values.
 - User safety: This contact can be used for any customer safety loop; opening the contact generates a specific alarm.
 - Ice storage end: When ice storage has finished, this input permits return to the second set-point (unoccupied mode).
 - Time schedule override: Closing of this contact cancels the time schedule effects.
 - Out of service: This signal indicates that the chiller is completely out of service.
 - Chiller capacity: This analogue output (0-10 V) gives an immediate indication of the chiller capacity.
 - Alert indication: This volt-free contact indicates the necessity to carry out a maintenance operation or the presence of a minor fau.
 - Compressors running status : Set of outputs (as many as the compressors number) indicating which compressors are running.

6

Performance data-standard chiller

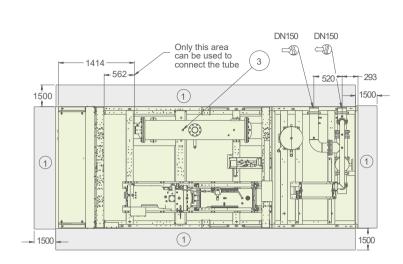
Model	30KAV	0550A	0660A	0700A	0800A	0900A	1000A	1100A					
Nominal cooling capacity*	kW	546.3	664.8	712.9	798.3	887.9	986.2	1068					
Compressor power input	kW	158.1	202.6	211.5	244.0	274.7	298.2	333.4					
Total power input	kW	170.7	215.8	226.1	260.0	292.1	317.0	353.6					
Compressor				VFD Semi-h	ermetic screw	compressor							
CircuitA		1	1	1	1	1	1	1					
CircuitB		1	1	1	1	1	1	1					
CircuitC		-	-	-	-	-	-	-					
CircuitD		-	-	-	-	-	-	-					
Minimum capacity		%	10%	10%	10%	10%	10%	10%	10%				
Refrigerant		R134a											
CircuitA		kg	85	92	92	100	100	125	125				
CircuitB		kg	80	85	90	90	95	95	125				
CircuitC		kg	-	-	-	-	-	-	-				
CircuitD		kg	-	-	-	-	-	-	-				
Control					Carrie	er® SmartVu™ s	ystem						
Condenser					Cu/	Al heat exchar	nger						
Fans					Axial fan								
Quantity		8	9	10	11	12	13	14					
Total air flow	l/s	40080	45100	50110	55120	60130	65140	70150					
Fan speed	rpm 950												
Evaporator		Flooded multi-pipe											
Water content	I	79	93	93	127	127	146	157					
Nominal water flow		l/s	26.04	31.69	33.98	38.05	42.32	47.01	50.92				
Nominal water pressure drop		kPa	47.2	53.4	46.3	31.1	45.9	46.3	44.4				
Max. water-side pressure (without hydronic module)		kPa	1000										
Water connection			Victaulic										
Nominal Diameter		DN	125	150	150	150	150	200	200				
Electrical data													
Nominal power supply		400V-3Ph-50Hz											
Control power supply			VFD start										
Start-up method			24V via internal transformer										
Fan and control power		kW	12.6	13.2	14.6	16.0	17.4	18.8	20.2				
Nominal unit current draw	Circuit A+B	A	267	339	356	404	452	497	550				
	Circuit C+D	A	-	-	-	-	-	-	-				
Maximum uint current draw	Circuit A+B	A	343	425	450	517	585	610	682				
	Circuit C+D	A	-	-	-	-	-	-	-				
Maximum start-up current	Circuit A+B	A	343	425	450	517	585	610	682				
	Circuit C+D	A	-	-	-	-	-	-	-				
Max operation power	Circuit A+B	kW	221	274	290	333	377	393	439				
Circuit C+D		kW	-	-	-	-	-	-	-				
Unit length	mm	5399	6475	6475	7555	7555	8635	8635					
Unit width	mm				2253								
Unit height	mm				2379								
Shipping weight	kg	5368	5825	5981	6800	7284	7624	7812					
Operating weight (Standard)	kg	5235	5626	5796	6620	7104	7428	7627					

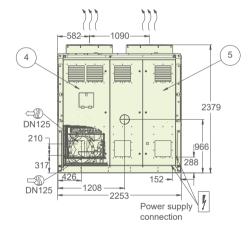

Performance data-standard chiller

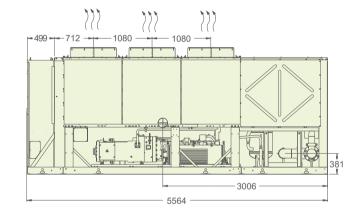
Model		30KAV	0351A	0451A	0551A	0651A	0751A	0901A	1160A	1230A	1300A	1350A	1400A	1500A
Nominal cooling capacity*	kW	346.2	430.2	537.3	614.1	738.1	875.1	1162	1224	1300	1348	1408	1472	
Compressor power input	kW	101.9	129.5	161.4	191.5	229.7	269.4	364.0	383.2	407.1	423.2	440.1	461.2	
Total power input	kW	110.9	138.5	173.2	203.3	244.3	286.8	387.0	406.2	432.9	449.0	468.7	489.8	
Compressor					V	/FD Semi	-hermetic	screw co	ompresso	or				
CircuitA		1	1	1	1	1	1	1	1	1	1	1	1	
CircuitB		-	-	-	-	-	-	-	-	-	-	-	-	
CircuitC		-	-	-	-	-	-	1	1	1	1	1	1	
CircuitD		-	-	-	-	-	-	-	-	-	-	-	-	
Minimum capacity		%	20%	30%	20%	30%	30%	20%	15%	15%	15%	15%	15%	15%
Refrigerant			R134a											
CircuitA		kg	95	100	160	170	180	200	160	170	160	170	160	180
CircuitB		kg	-	-	-	-	-	-	-	-	-	-	-	-
CircuitC		kg	-	-	-	-	-	-	170	170	180	180	200	180
CircuitD		kg	-	-	-	-	-	-	-	-	-	-	-	-
Control							Carı	rier® Sma	rtVu™ sys	stem				
Condenser						С	u/AI heat	exchang	er					
Fans							Axia	ıl fan						
Quantity		6	6	8	8	10	12	16	16	18	18	20	20	
Total air flow	l/s	30060	30060	40080	40080	50110	60130	80170	80170	90190	90190	100200	100200	
Fan speed		rpm	om 950											
Evaporator			Flooded multi-pipe											
Water content		I	44	84	84	101	101	127	185	202	185	202	211	202
Nominal water flow	l/s	16.50	20.51	25.61	29.27	35.19	41.71	55.40	58.34	61.96	64.25	67.12	70.16	
Nominal water pressure dro	р	kPa	26.4	30.7	41.3	44.8	52.2	55.8	49.7	51.4	61.1	62.8	63.7	66.6
Max. water-side pressure (without hydronic module)		kPa												
Water connection			Victaulic											
Nominal Diameter		DN	100	125	125	150	150	150	200	200	200	200	200	200
Electrical data														
Nominal power supply			400V-3Ph-50Hz											
Control power supply			VFD start											
Start-up method			24V via internal transformer											
Fan and control power		kW	9.0	9.0	11.8	11.8	14.6	17.4	23.0	23.0	25.8	25.8	28.6	28.6
Nominal unit current draw	Circuit A+B	A	174	218	272	319	383	450	272	319	272	319	272	383
	Circuit C+D	A	-	-	-	-	-	-	319	319	383	383	450	383
Maximum uint current draw	Circuit A+B	А	230	286	352	399	485	550	352	399	352	399	352	485
	Circuit C+D	A	-	-	-	-	-	-	399	399	485	485	550	485
Maximum start-up current	Circuit A+B	А	230	286	352	399	485	550	352	399	352	399	352	485
	Circuit C+D	A	-	-	-	-	-	-	399	399	485	485	550	485
Max operation power	Circuit A+B	kW	148	184	227	257	312	355	227	257	227	257	227	312
Circuit C-		kW	-	-	-	-	-	-	257	257	312	312	355	312
Unit length	mm	4325	4325	5405	5405	6485	7565	10775	10775	11855	11855	12970	12935	
Unit width		mm												
Unit height	mm							79						
Shipping weight	kg	4233	4398	4798	5276	5658	6373	10074	10552	10456	10934	11171	11316	
Operating weight (Standard)	kg	4065	4265	4665	5165	5496	6198	9830	10330	10161	10661	10863	10992	

Notes: * Nominal conditoins - evaporator entering/leaving water temperature=12/7°C, outdoor air temperature = 35°C Evaporator fouling factor = 0.018m²K/kW

* IPLV Calculations according to standard performances (in accordance with AHRI 550-590)

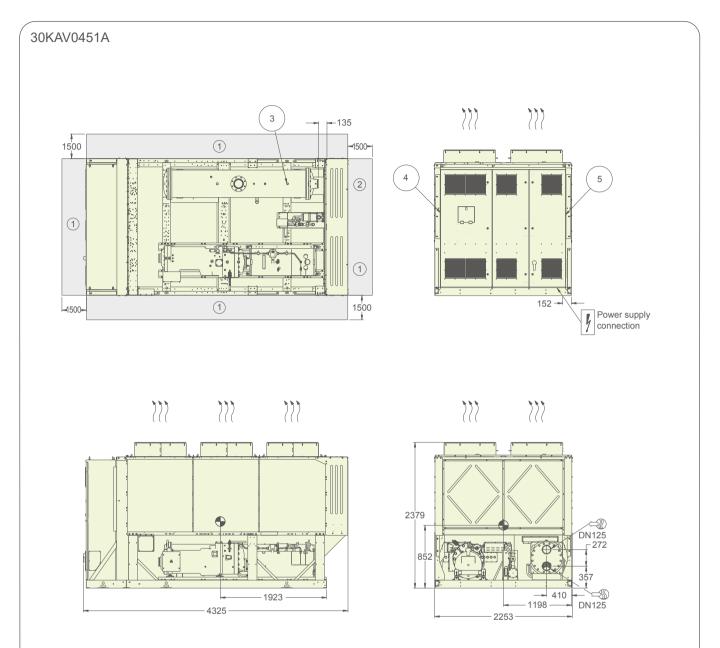

* Voltage range ±10% nominal voltage.



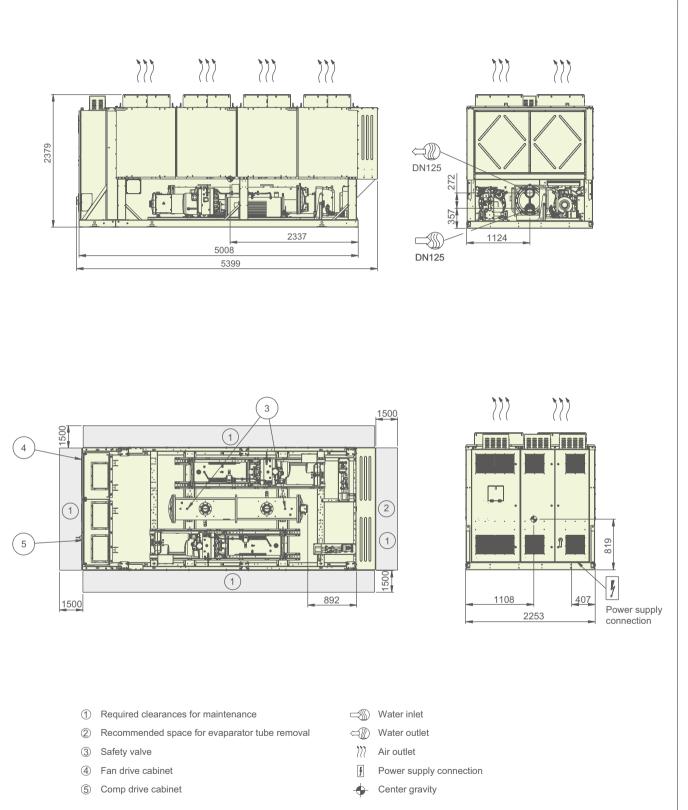

- ① Required clearances for maintenance
- ② Recommended space for evaparator tube removal
- ③ Safety valve
- ④ Fan drive cabinet
- ⑤ Comp drive cabinet

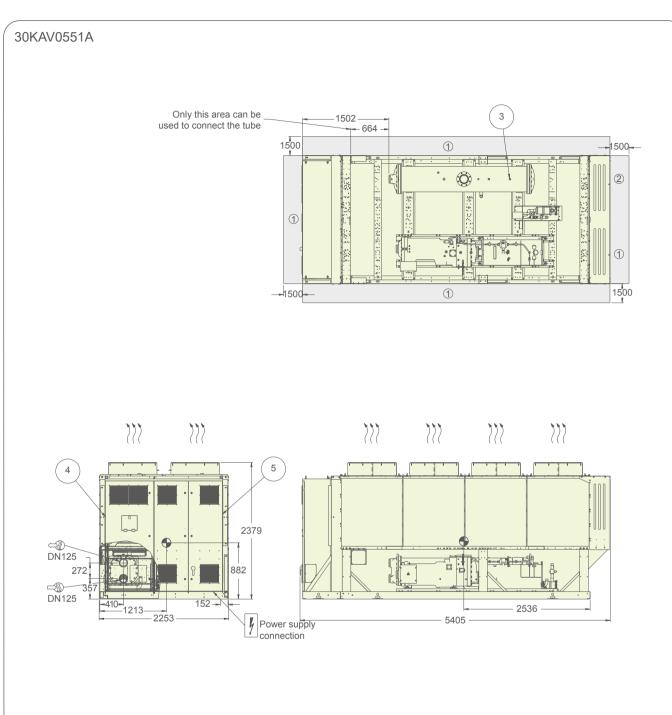
- ⇐ Water outlet
- Air outlet
- Power supply connection
- Center gravity

30KAV0351APT050



- ① Required clearances for maintenance
- ② Recommended space for evaparator tube removal
- ③ Safety valve
- ④ Fan drive cabinet
- ⑤ Comp drive cabinet

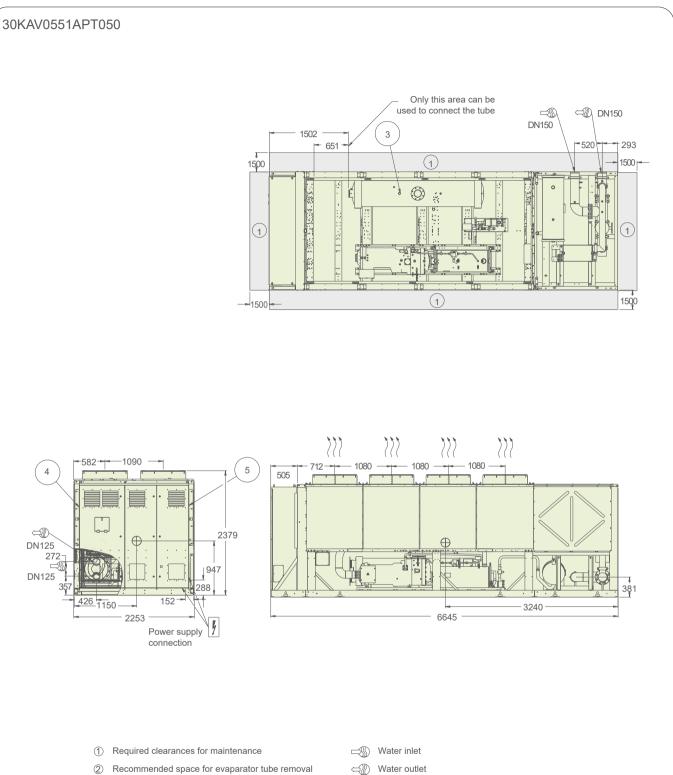

- ⇔ Water outlet
- >>> Air outlet
- Power supply connection
- Center gravity



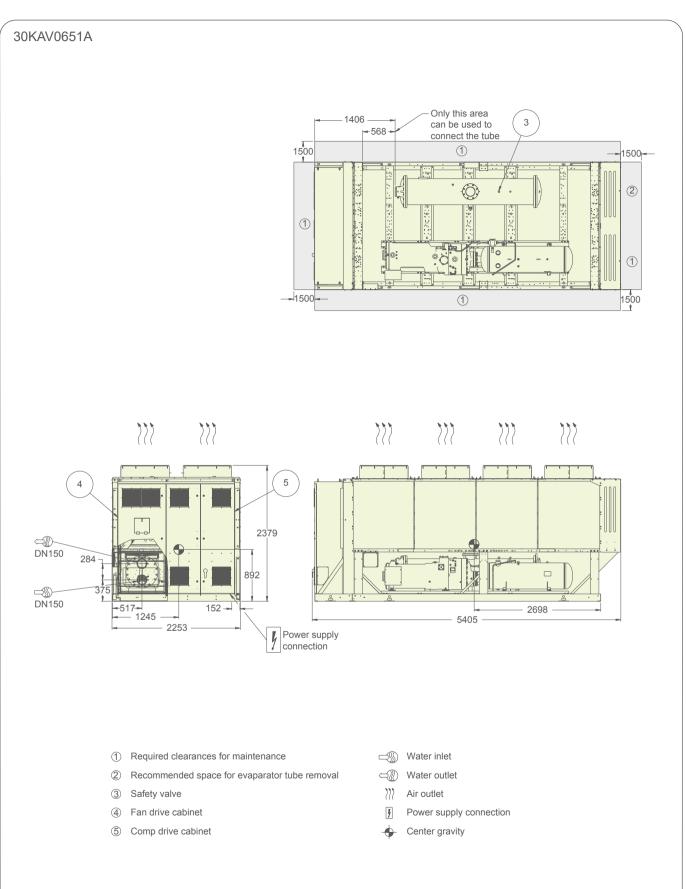
- ① Required clearances for maintenance
- ② Recommended space for evaparator tube removal
- ③ Safety valve
- ④ Fan drive cabinet
- ⑤ Comp drive cabinet

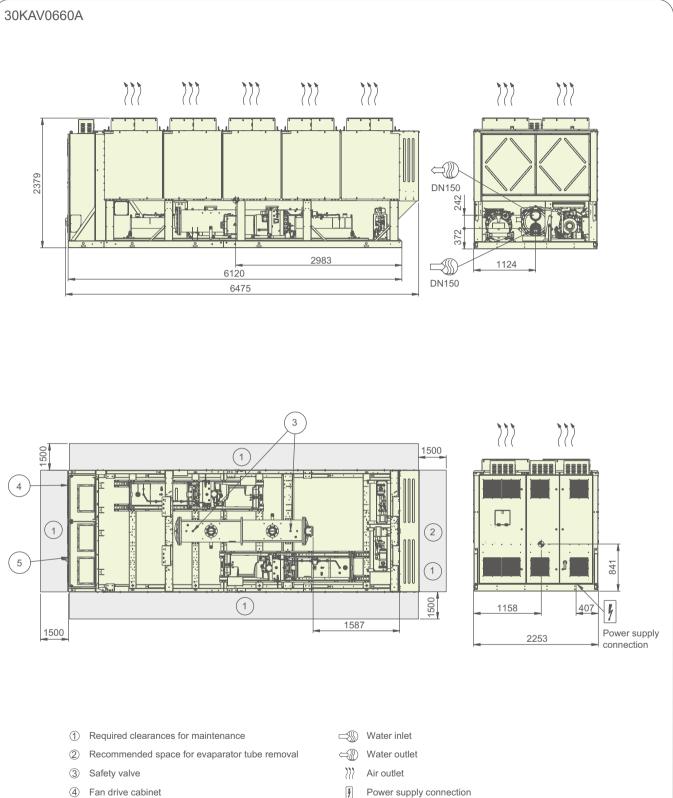
- □ Water inlet
- C Water outlet
- Air outlet
- Power supply connection
- Center gravity

30KAV0550A



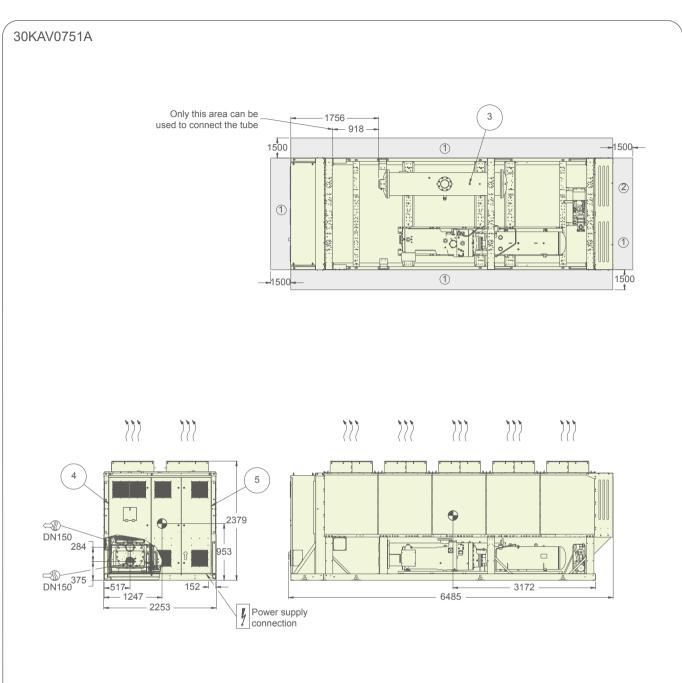
- ① Required clearances for maintenance
- ② Recommended space for evaparator tube removal
- ③ Safety valve
- ④ Fan drive cabinet
- ⑤ Comp drive cabinet


□ Water inlet


- C Water outlet
- Air outlet
- Power supply connection
- Center gravity

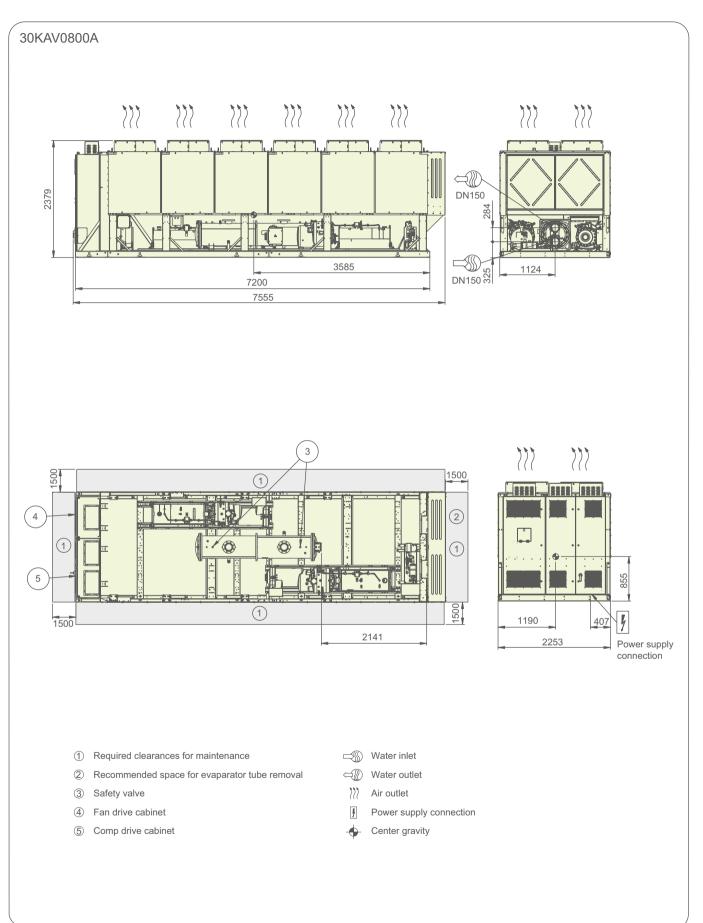
- ③ Safety valve
- ④ Fan drive cabinet
- (5) Comp drive cabinet

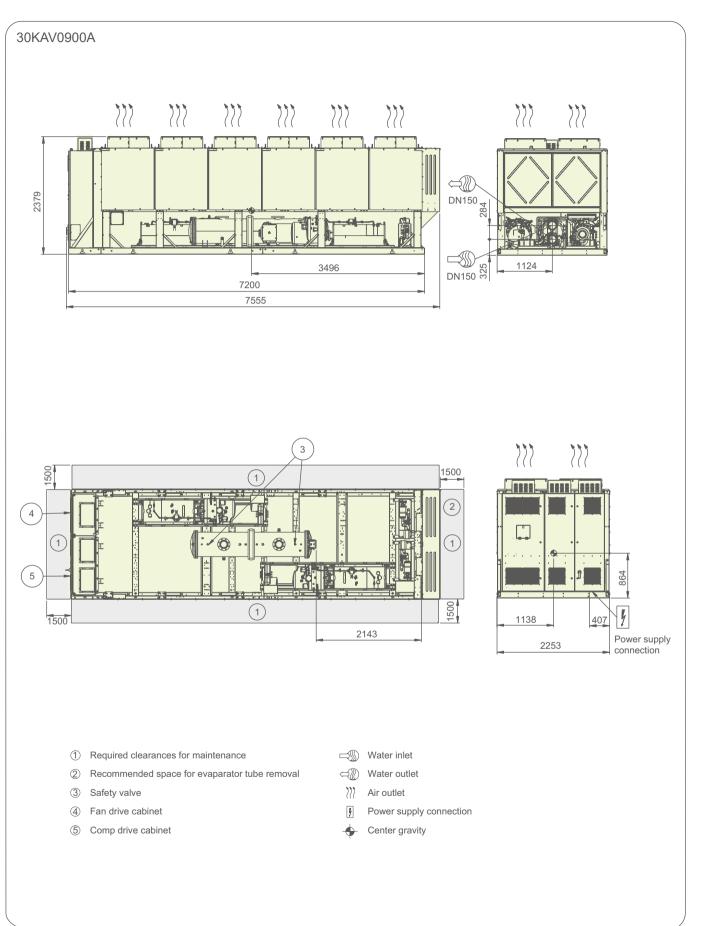
- رس vvaler
- Air outlet
- Power supply connection
- Center gravity

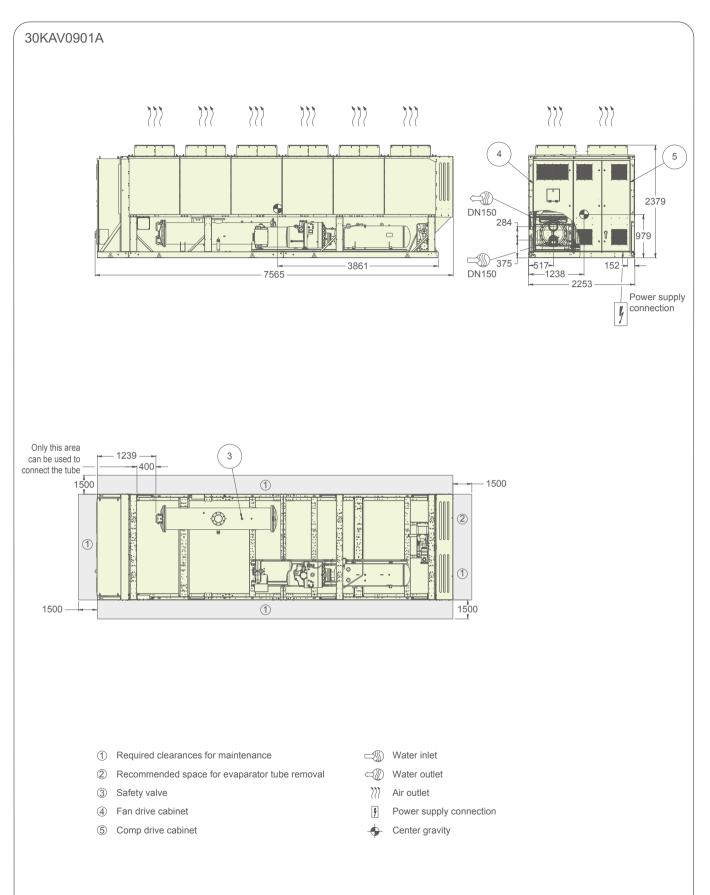


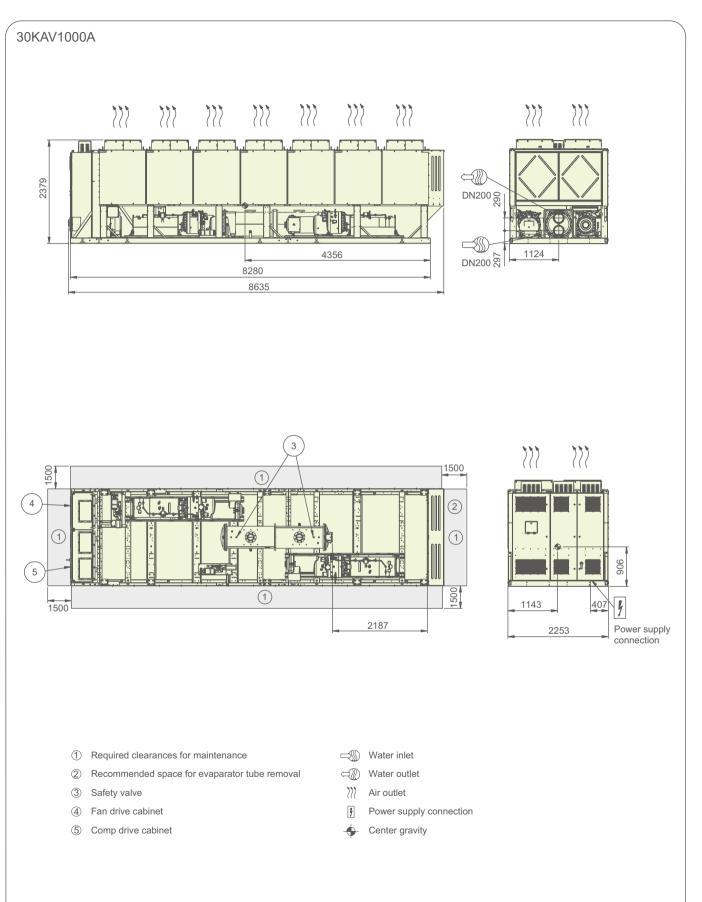
(5) Comp drive cabinet

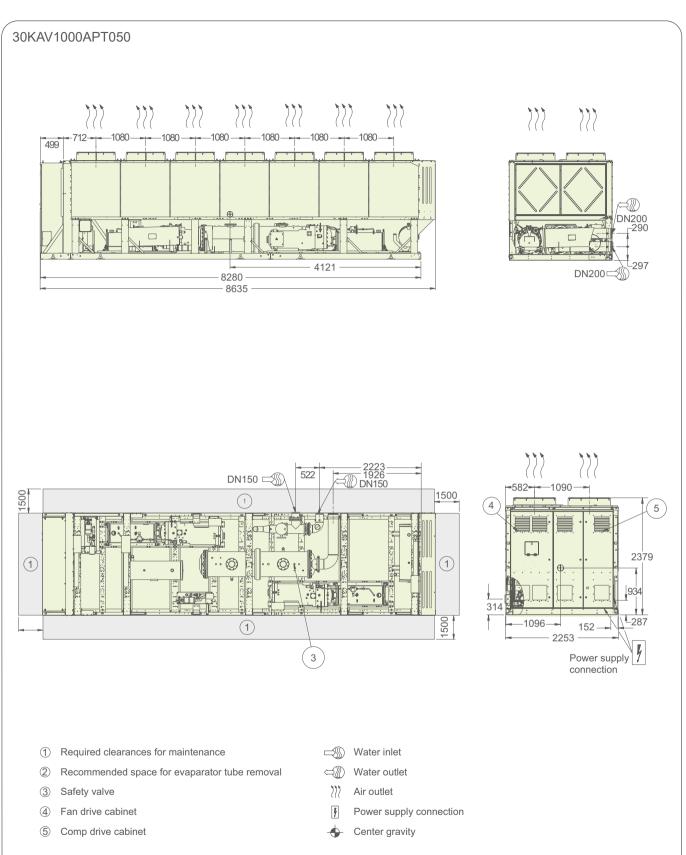
- Power supply connection
- Center gravity \bullet

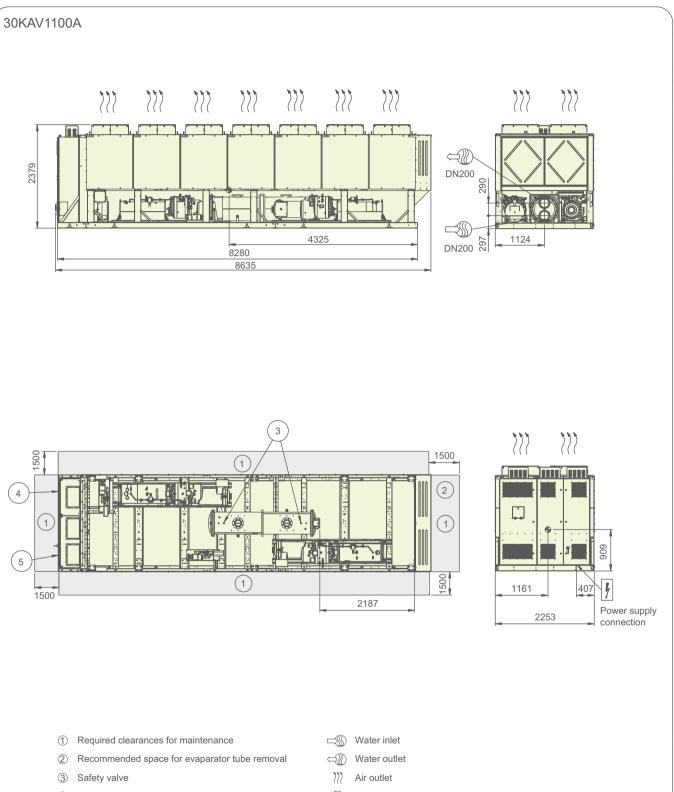

30KAV0700A 111 111 222 222 2379 DN150 242 372 2977 1124 6120 DN150 6475 3 111 111 1500 1500 (1)4 Ô (1)(2) 5 1 357 1500 407 (1)1136 ķ 1565 Power supply connection 1500 2253 □ Water inlet ① Required clearances for maintenance ② Recommended space for evaparator tube removal (In the second s ③ Safety valve 222 Air outlet ④ Fan drive cabinet ŀ Power supply connection (5) Comp drive cabinet Center gravity \bullet

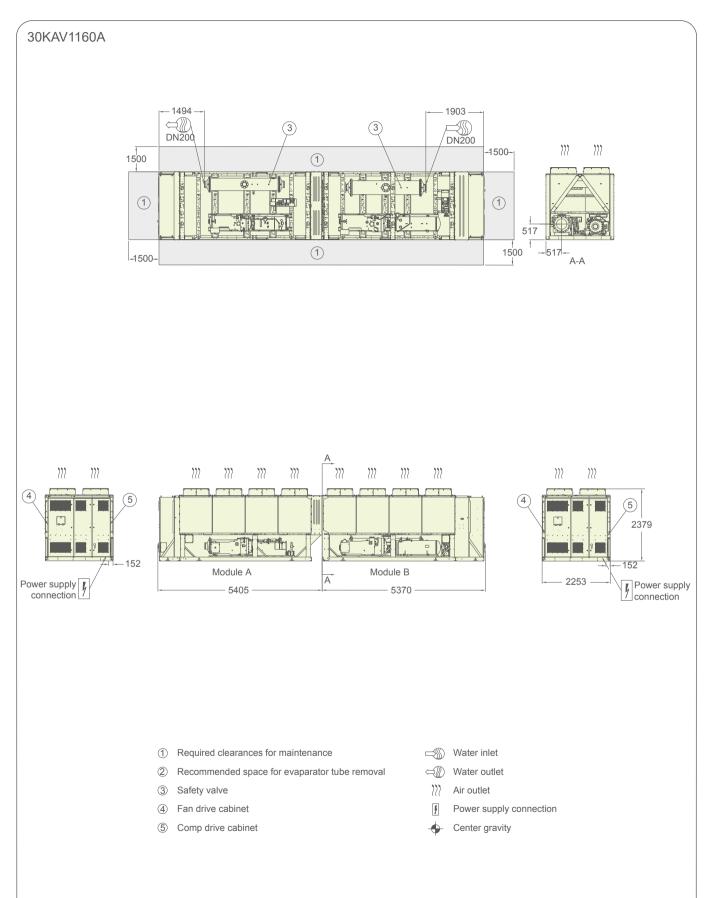


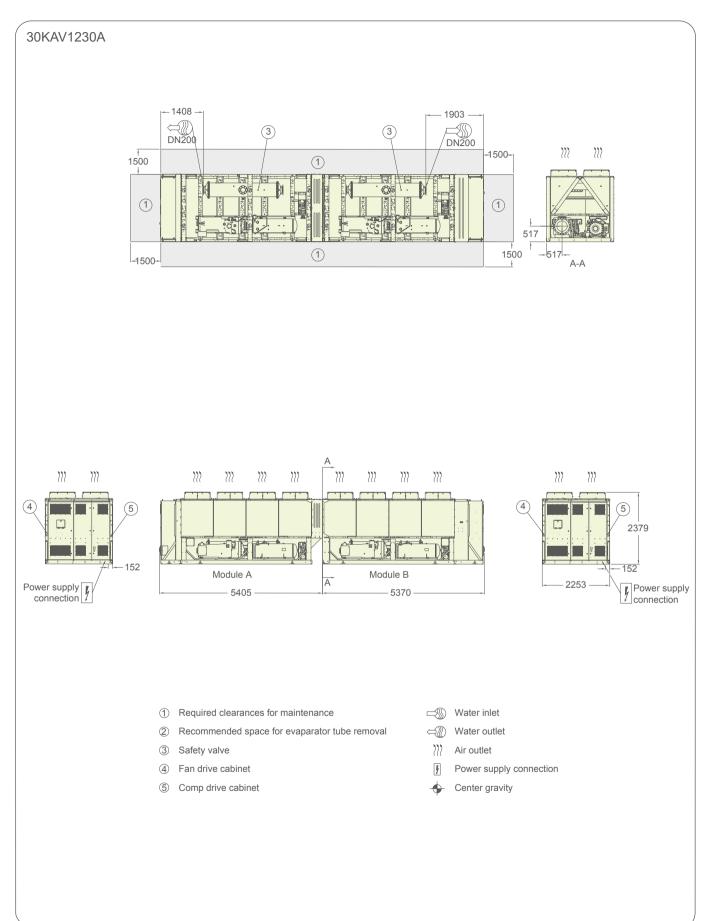

- ① Required clearances for maintenance
- 2 $% \fbox{2}$ Recommended space for evaparator tube removal
- ③ Safety valve
- ④ Fan drive cabinet
- ⑤ Comp drive cabinet

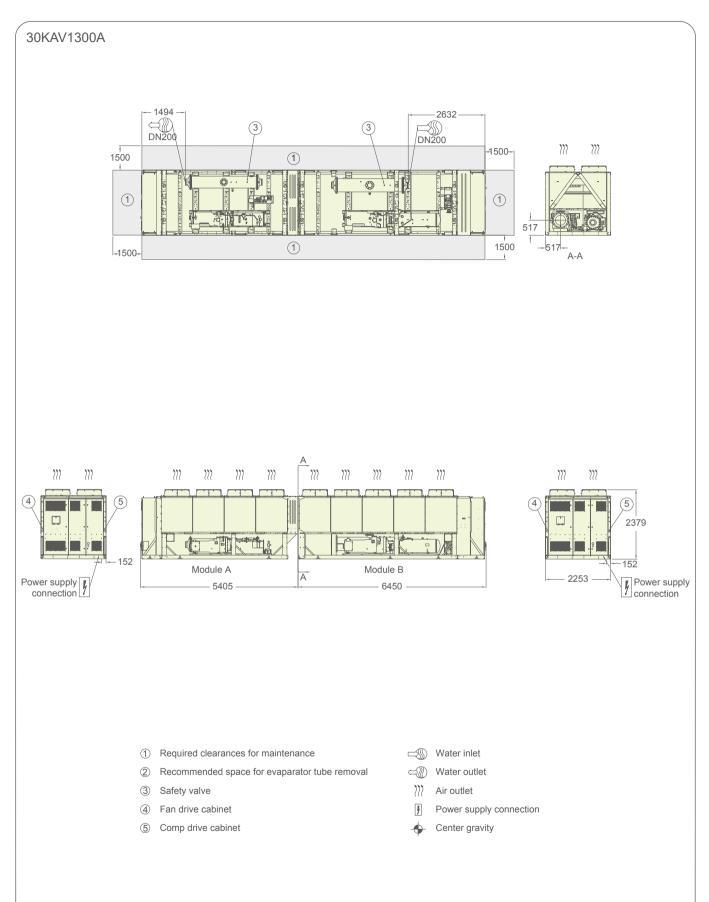

Water inlet

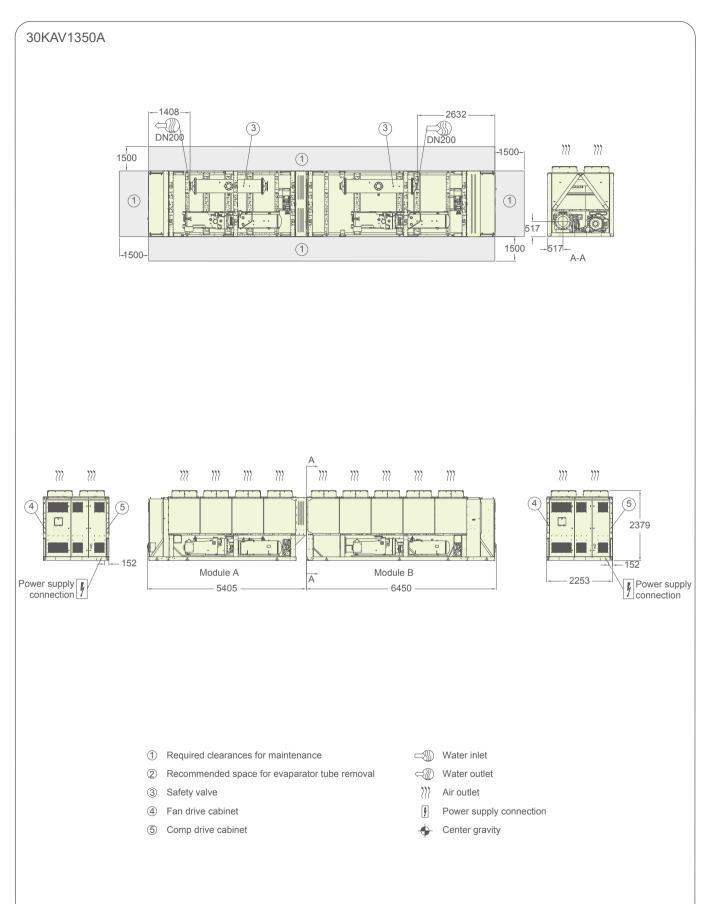

- Air outlet
- Power supply connection
- Center gravity

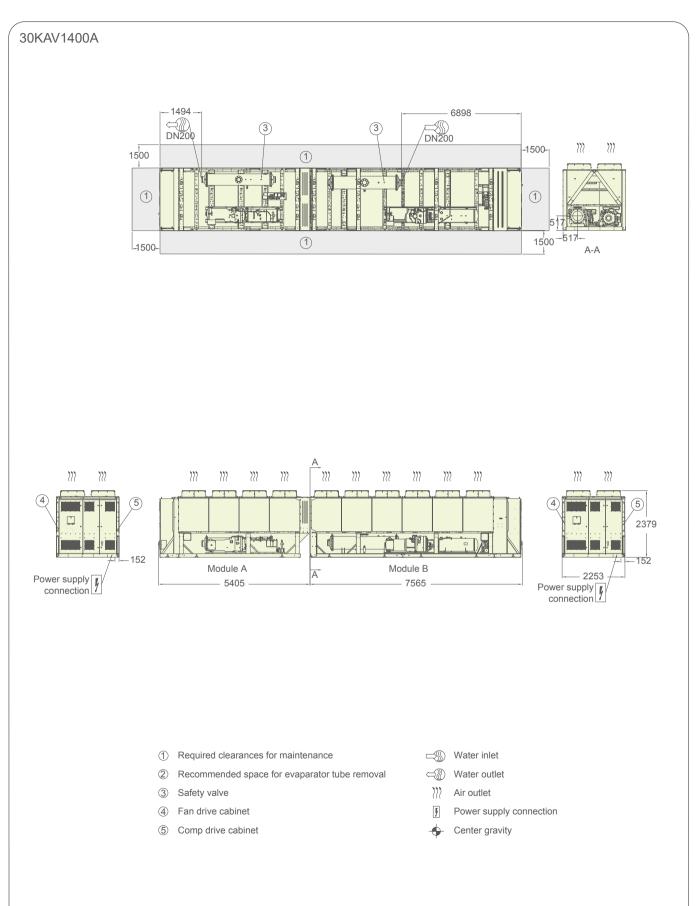


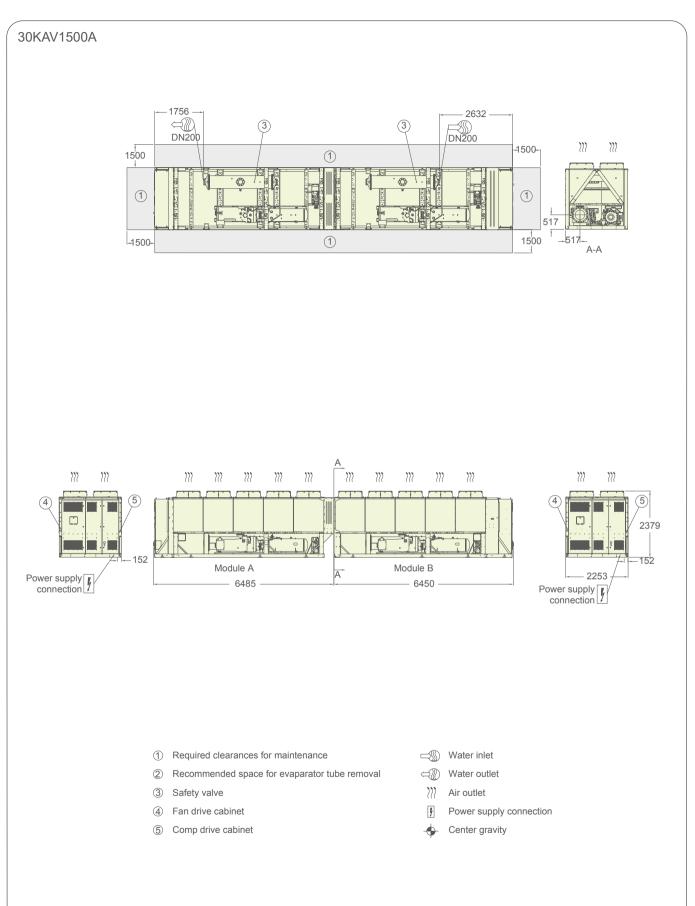







- ④ Fan drive cabinet
- ⑤ Comp drive cabinet


- Power supply connection
- Center gravity



HEALTHY**BUILDINGS**

As the inventors of modern air conditioning and a world leader in HVAC, refrigeration, and fire and security, solutions, Carrier has a legacy of creating safe and comfortable buildings. Our Healthy Buildings Program builds on that legacy through in-depth expertise and a holistic suite of healthy building technologies and services .to address the immediate pandemic concerns and long into the future.

6 of 9 foundations of healthy building are related closely to air conditioning system.

Primary support for the study came from Carrier.

MacNaughton P, Allen J, Satish U, Laurent J, Flanigan S, Vallarino J, Coull B, Spengler. 2016. The Impact of Working in a Green Certified Building on Cognitive Function and Health. Building and Environment DOI: 10.1016/j.buildenv.2016.11.041

www.carrier.com